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ABSTRACT

This study was conducted to investigate the quality of biochars derived from oil palm
trunk (OPT) based on relative trunk height (bottom, middle. top). The OPT biochars were
produced by drum retort kiln with a temperature range of 300-400°C (slow pyrolysis
conditions). Morphology, structure, chemical properties and heavy metal content of the OPT
biochars were measured in order to assess their suitability for use as a soil amendment. The
synthesized carbon was analyzed by X-ray diffraction analysis (XRD). The morphology of the
OPT biochars was analyzed by scanning electronic microscopy (SEM) coupled with an energy
dispersive X-ray spectrometer (EDX) to identify mineral species on the OPT biochar surface.
The analytical methods applied for biochar characterization were proximate analysis and
elemental analysis, Characterization of surface functional groups of the OPT biochar was
carried out using Fourier transform infrared spectroscopy (FTIR). According to the analysis
results, the biochar derived from bottom OPT had the highest intensity peak measured by XRD;
it contained 62.05% fixed carbon, 69.21% carbon, and it had the lowest oxygen content at
26.28%. The highest number of pores was found in biochar derived from top OPT. Overall, the
biochars had rich macronutrients, numerous functional groups, and low heavy metal content.
This study showed the applicability of oil palm trunk biochar for use as a soil amendment for
agricultural applications.

Keywords: Carbon; Characterization; Drum retort kiln; Heavy metal; Pyrolysis

*Corresponding author: ebsansianipar@methodist.ac.id




E.M. Sianipar et al. | Science & Technology Asia | Vol.29 No.1 January - March 2024

1. Introduction

Currently, biomass is one of the main
renewable and sustainable bioenergy sources
that is already widely used around the world
[1]. Biomass can also be used to produce
different chemicals and materials [2, 3] that
can be converted into three distinct forms of
bioenergy fuels, those being liquid (bio-oil),
gaseous (syngas) and solid (biochar) forms
[4-7]. However, the potentiality of biomass
as feedstock in each country or region
depends on a variety of factors, such as
location, climate, weather, available local
plantations, agricultural activity, and
industrial  processing. For  example,
Indonesia has many agro-industries, which
has led to the production and use of various
types of biomass.

Indonesia became the global leader in
palm oil export, with the increase in the
plantation area from 0.3 million hectares in
EP80 to 14.62 million hectares in 2021 [8].
The expansion of oil palm plantations has
been identified as a significant source of
anthropogenic  greenhouse gas (GHG)
emissions [9]. Meanwhile, the harvesting,
processing, and replanting of oil palm
produces many f§ms of oil palm biomass
(OPB), including empty fruit bunches (EFB),
oil palm fronds (OPF), mesocarp fiber (MF),
oil palm kemel shells (PKS), palm oil mild
effluent (POME), and oil palm trunks (OPT)
[10]. It has been estimated that by 2030,
Indonesia will produce 54 million tons of
EFB, 115 million tons of OPF, 31 million
tons of MF, 15 million tons of PKS, 130
million tons of POME, and 59.7 million tons
of OPT [11]. Utilization of oil palm biomass
in all of these forms is a promising way to
mitigate the negative impacts of oil palm
plantations and to develop renewable and
sustainable bioenergy sources.

Across Indonesia, there are 14.3
million hectares of oil palm plantations with
a 4%/year rejuvenation rate [13]. In the
context of commercial oil palm production,
the life cycle of th@EJl palm plant requires
that it be replaced every 20 to 25 years to

maintain the desired level of oil production
[12]. During the process of replanting oil
palm trees, large quantities of OPT and OPF
waste are produced. It has been estimated
that thJreplanting generates, on a dry weight
basis, 14.4 ton /ha of OPF and 66 ton‘ha of
OPT [14)]. Further, there is about 40.0 million
tons/year of trunk waste production. Oil palm
trunk, a biomass source that possesses the
desirable property of fast growth, is an
alternative to native or reforested wood. OPT
remfiils an underutilized byproduct of palm
oil, which is often shredded in the field at the
end of the productive lifetime of a plantation
tree. Therefore, OPT is one of the most
promising sources @ ¥eedstock biomass for
biochar synthesis. Biochar is a carbon-rich
byproduct of thermal degradation of organic

materials under an  oxygen-depleted
environment (i.e., pyrolysis) and was
recently recognized as an emerging

technology and is distinguished from
charcoal by its ability to be used as a soil
amendment [15-18]. However,
characteristics of biochar vary significantly,
depending on feedstocks, production
methods, and temperatures [19, 20].

OPT, is mainly composed of
hemicelluloses, cellulose, and lignin and has
a high potential for wuse in biochar
applications in Indonesia [21]. In terms of
sustainably, it is assumed that the conversion
of OPT biomass into other forms of biochar
is much more effective and useful than the
direct burning of biomass. Direct burming
produces a large amount of pollutants that are
hazardous to both human health and the
environment. At present, the use of OPT to
produce biochar using pyrolysis-based
processes is still a challenge as there have
only been a few studies that have
investigated this process as it relates to trunk
height [22-29], necessitating further studies
to obtain in-depth insights into the qualities
of biochars derived from bottom, middle, and
top sections of OPT. These three sections of
OPT biomass were pyrolyzed using a drum
retort kiln. It is crucial to wverify the
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morphology, structure, chemical properties,
and heavy metal content of OPT biochars
based on trunk section. The different trunk
sections of OPT (bottom, middle, top) were
assessed for variations in composition as it
relates to the suitability for use as a soil
amendment. We performed a full
characterization of the material based on the
International Biochar Initiatif (IBI) Biochar
Standards [30] and the European Biochar
Community (EBC) Standards [31]. The
purpose of this research was therefore to
investigate the quality of biochars derived
from bottom, middle, and top secs of
OPT for the suitability of the biochar as a soil
amendment.

2. Materials and Methods
2.1 Material

OPT was collected from oil palm
plantation PTPN IV at Tanah Jawa,
Simalungun District, North  Sumatera
Province, Indonesia. OPT was harvested at
the oil palm plantation, selecting mature stem
samples at 23 years of age, taking cylinder
logs approximately 15 min length and 59 cm
in diameter. OPT is fibrous, bulky, and has a
EGkh moisture content of about 76%. OPT
sampling was conducted by sectioning the
trunk into three parts: bottom, middle and
top. The boundaries of the three trunk
sections were 0-30%, 30-60%, and 60-100%
of the total height, corresponding to bottom,
middle, and top, respectively. First, the OPT
was chipped by heavy-duty chipper into
pieces about 10-15 em thick (Fig. 1). The
OPT was then sun-dried for 6 hours a day for
ten days to reduce the moistureffintent to
around 15% by weight (Fig. 2). The higher
the water content of the feed-stock, the more
combustion energy is needed to evaporate the

water and to heat the feedstock to pyrolysis
temperatures (300-400°C).
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Fig. 2. Sun dried of OPT chipp.

2.2 Pyrolysis

Pyrolysis was carried out using a drum
retort kiln with a 200 liters drum reactor
system. The center of the drum had a hole at
top (cap) and bottom (floor) where a 6 in
diamter pipe was placed. The pipe had holes
about 10 em from its bottom to allow smoke
to escape. Dried OPT biomass was placed in
the drum retort. The biomass was heated
directly by burning wood in the kiln. The
drum was sealed by heat isolation fabric (Fig.
3) which allowed the drum to form the
necessary gas-tight seal required for
carbonization to take place.

Fig. 3. The drum retort kiln.
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The kiln was fired and the biomass was
heated for 7 hours, reaching temperatures of
300°C to 400°C. The temperature reading
was shown on digital infrared thermometer
(BNQ, BN 1000) (Fig. 4). After cooling for
12 hours, the drum was opened and the
biochar was removed.

7%
Fig. 5. OPT biochar.
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2.3 Characterization of biochar

The biochar (Fig. 5) were ground to
particle size < 20 mess and three
representative samples (bottom. middle. and
top OPT biochar) were taken for analysis.
The crystallogr@hy of OPT biochar was
characterized using X-ray diffraction
analysif})(XRD) SHIMADZU Lab X 6100
Japan. X-ray pattern was equipped with Cu
Ka radiation (4 = 1.5406 A) with a targeted
voltage of 45 kV and a current of 40 mA. The
scans were collected from 5-70° and used a
step size of 0.02° 20 and a scan sfg@ed of 1.0°
20/min. The morphology and the mineral
species of the biochar were identified using
scanning electron microscopy [EEM)
(ZEISS EVO MA 10 Germany) and energy
dispersive X-ray spectroscopy anafgis
(EDX) (BRUKER 129 eV Germany), with
15 kV and 180 Pa for acceleration voltage

and beam current, respectively, in a vacum of
25 Pa with an Au coating. The analytical
methods applied for biochar characterization
were proximate analysis and elemental
analysis. The proximate analysis for
moisture (Carbolite minimum free space
oven), ash (Carbolite Horizontal Muffle
Furnace), and volatile contents (Ishizuka
Denki Muffle Fumace) were determined
according to the ASTM D1762-84 standard
method. Fixed carbon was determined
according to ASTM D3172-17. The
elemental analysis (CHN) was performed in
duplicate using an Elemental Analyser (Leco
CHN 628 USA), and element S using Leco
EE)4-DR. The organic functional chemical
groups of biochar were identified using the

fourier transform infrared spectroscopy
(FTIR), Nicol@ IS 10 ATR USA
(38/IKA/MT). The chemical functional

groups in biochar are vital to understanding
the chemical characteristics of the bg@char
produced. The spectra were recorded with a
4 em’! resolution between wave numbers of
4000" and 500 em. The graph is drawn
using Origin 8 pro, Excel. Heavy metal
content analysis was performed using HNOs
digestion (CEM Mars 6) and followed by

determination with Atomic Absorption
Spectrophotometry  (Hitachi ZA 3000,
Japan).

3. Results and Discussion
3.1 XED analysis

The result of the XRD measurement of
the synthesized carbon of the OPT biochars
is shown in wide-angle range (5° to 70°) (Fig.
6). In the case of the carbon, it demonstrated
a broad peak at 20 value of 21-22°, which
corresponds to the amorphous plane of (002)
carbonaceous materials [32]. The spectra of
the C-OPT biochars presented characteristic
peaks at 21.92°, 44.12°, and 64.62° for the
biochar derived from bottom OPT. As for the
biochar derived from middle OPT, the
characteristic peaks wereat 21.72°, 44.3° and
64.22°. While the characteristic peaks were
at 22.5°, 44.08°, and 64.22° for the biochar




E.M. Sianipar et al. | Science & Technology Asia | Vel 29 No. I January - March 2024

derived from top OPT comresponding to the
(002), (200) and (220) planes of carbon,
respectively. The highest intensity of the
peaks was shown by biochar derived from
the bottom OPT, followed by middle OPT,
indicating that the bottom OPT biochar has
the highest degree of graphitization [33], and
the broad peaks of OPT biochar also suggest
that the synthesized carffgh from OPT is
amorphous [34]. The thermal pyrolysis
enabled the trans-formation of biomass to
biochar by condensation of smaller organic

molecules into conjugated aromatic rings,
meanwhile producing massive defective
edges along the biochar boundaries
terminated with hydrogen atoms and oxvgen
functionalities [35, 36]. The quality of
biochar is determined by its fixed carbon
content and biochar composition is crucial to
define its application [37]. One identified
option for sustainable soil management
practice is to increase soil organic carbon
levels, especially with recalcitrant forms of
carbon (e.g., biochar application) [38].
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C(200) 443" C220564 22"

200144 12° c20)4

e
L

« . hstripa (1)

62"

:m {a)

C(220)64 22"

2 Theta (°)

Fig. 6. XRD pattern of the OPT biochars: (a) bottom; (b) middle; (c) top.

3.2 Morphological analysis

The SEM-EDX analysis of OPT
biochar is presented in Fig. 7. The
morphology of top-OPT biochar had
relatively more pores on its surface. In the
case of bottom-OPT biochar, the pore size
was smaller and the number of pores was
fewer (Fig 7a). This is because the bottom-
OPT biochar contained the highest level of
lignin, giving it a high density structure that
was hard and solid. Consequently, the
pyrolysis of the bottom OPT did not
completely devolatilize most of lignin, and
the pores were not fully develoved. The
formation of pores anfJan increase in
surface area were mostly due to the removal
of moisture and certain volatile matter due
to the elimination of hemicelluloses and
cellulose. Further increase in pore size, pore
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volume, and surface area was observed as
mostly the major constituents of
lignocelluloses, i.e., lignin, cellulose, and
hemicelluloses, were broken down as
depicted in previous studies [39]. As a
result, the highest number of pores was
observed in the top-OPT biochar (Fig. 7c).
Porous channels and a high} amount of
mesopores were observed on the surface of
the OPT biochar produced in this study,
similar to previous results [40-42]. The
synthesis and release of volatile molecules
from OPT throughout the carbonization
process is indicated by porous channels.
The remaining non-volatile components are
subsequently converted into biochar, which
has pores of various sizes and shapes visible
on the surface.
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Fig. 7. SEM photographs at 1,000X and EDX analysis of the surface of the biochar: a. bottom; b. middle;

c. top.

The large pores are caused by the
progressive degradation of the
lignocellulosic  components  including
cellulose, hemicelluloses, and lignin. At
higher temperatures, these pores also
facilitate the release of volatile materials
resulting in larger pore size [40].
Furthermore, the highly porous structure of
biochar may be beneficial for biofilter
applications and soil mixing [44]. This
highly porous structure increases water
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holding capacity by increasing the total
porous space of the soil, in addition to its
benefits as a soil amendment [45].

On the surface of the OPT biochars,
EDX examination demonstrated the
coexistence of elements C, O, K, Ca, &,
Si, Cl, S, and P. This is because the
feedstock (OPT) contains bioavailable
elements that have an impact on the soil
environment. Carbon and oxygen are
prominent on all surfaces, with carbon
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constituting almost the entire surface
composition. Minor peaks were also
observed for Mg, K, Si, CL, S, and P on all
surfaces. Low pyrolysis biochars showed
higher concentrations of Ca, Mg, K, Fe,
Mn, and Zn than fast pyrolysis biochars did
[46]. This is in agreement with another
study, which reported that K, Ca and Mg
appeared to be retained in low pyrolysis
temperatures of 400°C [47]. The biochar
ash mineral content includes inorganic
constituents such as oxides, carbonates,
silicates, sulfates, chlorides, and
phosphates of some metals [48]. The
macronutrients P, K, S, Ca, and Mg are
among those found in OPT biochars. The
type of feedstock and the processing
conditions have a significant impact on the
nutritional content of biochar. One of the
main oxides found in OPT is KO, along
with CaO, SiO, P:0s, and MgO [49].
Nutrient availability is related to the nature
of the chemical compounds in which the
key elements occur [50].

3.3 Proximate and elemental analysis

The proximate and ecleme¥d
analysis results of OPT biochar are
summarized in Table 1. The relative

standard deviation for the proximate
analysis was < 4%, while it was < 2% for
the ultimate analysis. The proximate
analysis showed that the moisture content,
fixed carbon content, volatile matter, and
ash content of the OPT biochar derived
bottom to top trunk were in the ranges of
4.54-6.07, 62.05-54.34, 30.12-3FhR. and
7.83-12.34 (wt.%), respectively. The data
suggest that there is a small difference
between the biochar derived from bottom,
middle and top OPT. The highest fixed
carbon content was found in bottom-OPT
biochar (62.05%), followed by middle-OPT
biochar (57.93%), and the lowest content in
top-OPT biochar (54.34%). However, the
volatile matter of the bottom-OPT biochar
was the lowest of the three, at 30.12 wt.%.

Table 1. Proximate and ultimate analyses of OPT biochar produced by drum retort kiln.

Property Bottom Middle Top Average+St.Dev
Proximate Analysis (% dry basis)

Moisture 4.54 5.22 6.07 528 £ 077
Fixed Carbon 62.05 57.93 54.34 58.11 + 3.86
Volatile Matter 30.12 31.23 3332 3L56 = 162
Ash 7.83 10.84 12.34 10.34 + 230
Elemental Analysis (% dry basis)

C 69.21 67.31 65.49 67.34 + .86

H 4.42 4.79 4.43 455 £ 021

N 0.06 0.05 0.05 0.05 £ 0.01

8 0.03 0.04 0.04 0.04 = 0.01
o* 26.28 27.49 29.99 27.92 + 1.89
Bulk atomic ratios

H/C 0.76 0.84 0.81 0.80 + 0.04
o/C 0.38 0.41 0.46 0.42 + 0.04
(N+0O)/C 0.38 0.41 0.46 0.42 + 0.04
The rem§fling volatile matter in biochar composition of biochar is crucial in

includes oxygenated compounds such as
acetic acid, furans, phenols, and 2-
Propanone, l-hydroxy- [40]. In the present
study, it was observed that the moisture
content of biochar samples was not zero
after pyrolyzing, which is similar to results
from previous studies [40, 41].

The quality of biochar is determined
by its fixed carbon content and the
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determining its potential applications [20].
The proportion of fixed carbon was related
to the presence of §dible aromatic carbon in
the biochar [51]. Taking into account the
recalcitrant nature of carbon contained in
the  biochar  (high resistance to
mineralization due to the microbial action),
the above result suggests that the pyrolysis
of OPT is an effective way to increases the
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tumover time of the carbon contained in the
Elomass. The high fixed carbon content of
biochar is favorable for use as a soil
amendment [40, 52]. The high fixed carbon
content of biochar also helps improve soil
carbon sequestration that results in an
fffrease in soil organic carbon content [53].
Biochar soil management systems could
deliver tradable carbon emissions reduction
as the carbon sequestered could be the basis
for sustainable oil palm cultivation, even
§fkh the impacts of climate change in
Indonesia. This could combat
desertification, sequester atmospheric CO:
in the long term, and help to maintain
biodiversity in tropical rainforests [54].
However, the volatile matter of the biochar
remained between 30.12-33.32 wt.%,
indicating incomplete pyrolysis of the
biomass under the investigated pyrolysis
temperatures and time. This is because the
biomass samples contained some lignin,
which  only decomposes at high
temperatures. The lower volatile matter led
to a higher fixed carbon content in the
biochar. The ash content of OPT was 7.83-
12.34 wt.%. The ash in biochar is non-
volatile and non-combustible. The increase
in ash content of biochar resulted from the
destructive volatilization of lignocellulose
components at higher temperatures [55].
Lignin, with its greater chemical stability,
can be only partially degraded during
pyrolysis. Correspondingly, the original
skeleton of'the particles is mostly preserved
[56] and the particles retain the cellular
appearance of the raw materials [57].

The elemental composition of the
OPT biochar in regards to C, H, N, S, and
O content derived from bottom to top trunk
were in the ranges of 69.21-65.49; 4.42-
4.79; 0.05-0.06, 0.0389.04 and 26.28-29.99
wt.%, respectively. The results show that
carbon and oxygen are the most abundant
elements present in the OPT biochar,
whereas hydrogen, nitrogen, and sulphur
were detected at low concentrations. It
should be noted that the feedstock (oil
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palm) has been found to store an estimated
37.8 to 42.1 t C ha™ in its above-ground
biomass [58]. Biochar is graded based on its
carbon content, split into three classes.
Class I has a carbon content of 60% and
higher, class Il has a carbon content of 30
to 60%, and class III has a carbon content
of 10 to 30% [30]. According to IBI biochar
standards, the organic carbon content of the
OPT biochars in this study e all > 60 %,
placing them in class I. The results of
ultimate analysis were consistent with the
proximate analysis results as indicated by
the relation between fixed carbon content
and wvolatile matter, and carbon and
hydrogen content. These results clearly
showed that the pyrolysis of bfflhass
produced biochar with a high carbon
content and a low oxygen content, which is
similar to the results from previous stfifies
[40]. This biochar product is suitable to be
used as a soil amendment to improve soil
fertilitfg 59].

As one of the roles of biochar is to
store carbon, the C yield and H/C ratio is
more important than the biochar yield in
regards to carbon sequestration [60].
Generally, the H/C molar ratio can be used
as an indicator of the degree of aromaticity
and carbonization. Combustion analysis
H/C ratios of 0.76 (bottom), 0.84 (middle)
and 0.81 (top) OPf#iochar indicate similar
aromaticities. An H/C ratio > 0.6 indicates
the possibly of not being fully carbonised
[52]. This means that fif}low H/C ratio
indicates a biochar that highly carbonised,
exhibits a highly aromatic structure, and has
a generally high stability for storing carbon
[61]. Furthermore, the H/ C and O/C ratios
are essential parameters for stability and
degree of oxidation in the biochar structure.
Biochar produced at low temperatures will
have O/C and H/C ratios that are larger than
those of biochar produced at high
tempefBures [62].

Biochars with low H/C and O/C
ratios are graphite-like materials or
charcoal which are highly stable compared
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to their original biomass feedstock having
higher H/C and O/C ratios [31]. The
polarity index ((O + N)/C), an indication of
the surface hydrophilicity and polar group
content, was similar for bottom-OPT
biochar (0.38), middle-OPT biochar (0.41)
and top-OPT biochar (0.46) indicating
similar hydrophilicities. Essentially, every
carboifBich solid often consists of two
parts: hydrophobic core (a highly aromatic

nucleus) and hydrophilic shell (outer layer;
a high concentration of reactive oxygen
functional groups like hydroxyl/phenolic,
carbonyl, or carboxylic groups) [63].

3.4 FTIR analysis

FTIR analysis was conducted to
determine the functional groups in OPT
biochars (Fig. 8).

ERITTr
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Foy s
etk frw 4
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Fig. 8 showed that ge classification
of chemical compounds present in the
biochar can be derived from the functional
groups that were detected as vibrational
modes (or transmittance peaks) observed at

Table 2. The FTIR results for OPT biochar.

Fig. 8. FTIR spectra of OPT biochar: (a) bottom, (b) middle, (c) top.

different ranges of wavenumber (Table 2).
The OPT biochars had several bends which
indicates that they had a high level of
functional groups present at the surface.

Frequency range (cm'!) Functional groups Bottom Middle Top
3200-3500 O-H siretching 3233 3215 3207
2800-2950 C-H stretching 2892 2018 2019
2500-2700 Carboxylic O-H 2601 2575 2577
2200-2500 C=C stretching 2089 2164 2228
1600-1700 Aldehid C=0 1697 1695 1694
1583-1464 C=C stretching 1581 1568 1583
1371-1250 C-0 stretching 1363 1371 1371
1100-1212 C—H bending 1212 1112 1114
750-600 C—H in plane benching 752 751 754
This is because the biochar still elemental compositions were relatively

contained structures of carbon, hydrogen,
and oxygen, wfJh mostly remained in the
form of lignin. The results of FTIR analysis
are consistent with the proximate and

ultimate  analysis  results  discussed
previously. The spectra of the three OPT
biochars did not differ because their
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similar as indicated by the content of
carbon, hydrogen, and oxygen. The peaks
can be explained as follows. The first peak
appeared at 3200-3600 c¢cm’' and was
attributed t@ie stretching of an O-H group
[63, 64]. It is also attributed to the
acceleration in the dehydration reaction of
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biomass. The small peaks at 3208 cm™' were
associated with the C-H stretching vibration
of aliphatic and aromatics structures. The
carboxylic O-H occurred in the range 2500-
2700 &h'[65]. The observed peak at 1694-
1697 ecm” is attributed the presence of a
carbonyl group in carbohydrate [66]. The
aromatic C = C ring stretching vibration
occurred at 1568-1583 cm™ [43, 65]. At
1371 em’’, the peak is assigned mainly to
stretching vibrations of aliphatic C—H and
CH2 bending in biochar. The band in the

Table 3. Heavy metal content of OPT biochar.

range of 1115 cm™' represents the stretching
of arofflic C—O and phenolic OH. The
weak wvibrations of the C-H bond in
aromatic and heteroaromatic compounds
are visiblhs a band between 604-754 cm’’
[66, 67]. Among these, the carboxylic and
phenolic groups were the prinfy acidic
functional groups. These groups provide an
opportunity for application in the
immobilization of heavy metals in the soil

[68].

Element Bottom Middle Top Average + St.Dev (EBC Standards)[31] S{[‘Iﬁg‘;aﬂrg;l[l;;]
As 0.03 0.10 0.10 0.08 £ 0.04 <13 12-100
Cd nd nd Nd < 1.50 1.4-39
Cr 6.10 4.90 8.60 653+ 1.89 = 90 64-1200
Co 1.20 1.70 4.20 237+ 1.61 - 40-150
Cu 84.00 §7.00 26.00 65 .67 £34 39 < 100 63-1500
Pb 1.10 1.10 6.00 273+ 283 = 120 70-500
Hg 0.01 0.01 0.01 0.01+0.00 = 1.00 1-17
Mo nd 5.30 15.00 10.15 £ 6.86 - 5-20
Ni 0.90 1.20 230 1.47+0.72 < 50 47-600
Se 0.60 0.40 0.40 047£0.12 2-36
Zn 177.00 477.00 410.00 35467+ 15747 < 400 200-7000

3.5 Heavy metal content

Heavy metal content and maximum
allowed thresholds of IBI Biochar Standards
are listed in Table 3. These thresholds were
used as a reference to understand the levels
of heavy metals in OPT biochars for soil
amendment. Considering the heavy metals
contained in the biochars, Zn had the highest
concentration at 177-477 mg kg™, followed
by Cu with a concentration of 26-84 mg kg™'.
Other heavy metal concentrations were
below 15 mg kg'. According to the standards
of IBI biochar thresholds [30] and the
European biochar certificate [31], these
results indicate that the heavy metal contents
are acc@Btable and the biochar product is
clean. avy metal contamination is a
worldwid@) problem and anthropogenic
activities are to blame for the increased
Bdncentrations of heavy metals in soils [70].
High concentrations of heavy metals
adversely affect soil quality and biological
functions due to their toxicity and persistence
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after entering the soil [69]. The content of
heavy metals in biochar is greatly influenced
by the source biomass [71]. Overall, heavy
metal content in OPT biochars do not pose
threats to the environment when biochar is
used as a soil amendment.

4. Conclusion
The biochar derived from the bottom
section OPT provided the highest intensity of
peaks and amount of fixed carbon (62.05%).
Overall, each of the OPT biochars had an
average carbon content > 60% making them
all class | biochars, indicating that they are
conducive to carbon sequestration when used
&soil amendment. The biochars all had an
ratio > (.6 which indicates the possibly
of not beinEhlly carbonized. The biochars
also had a porous structure, and contained
macronutrients such as P, K, S, Ca, and Mg
for plant growth, and oxygen containfilg
functional groups present on the suface for
the immobilization of heavy metals in the
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soil. Most concentrations of heavy metals in

the OPT biochars were still up to the
European biochar certificate and the IBI
biochar threshold standards. Based on these (6]
results, it can be concluded that OPT biochar
possesses suitable properties for its use as a

soil amendment for agricultural applications. [7]
Still, the research on OPT biochar as a soil
amendment is scarce and more research

should be conducted to further validate the [8]
benefits of it as a soil amendment on oil palm
plantations.
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